Engineering Data

Area and Volume Formulas

Circle

D = 2R $C = 2\pi R = \pi D$ $A = \pi R^2 = \frac{\pi D^2}{4}$

D

Ellipse

 $A = \frac{\pi R^2 \propto}{360} = \frac{RL}{2}$ $L = \frac{\pi R \propto}{180} = \frac{2A}{R}$

 $A = \pi \times A \times B$

 $C = \pi \sqrt{2(A^2 + B^2)}$

 $A = 2\pi R (R + H)$ $V = \pi R^{2} H$

C = Circumference

 \mathbf{R} = Radius

Rectangle A = L × W

Trapezoid

 $A = \frac{(L1 + L2) H}{2}$

Rectangular Solid A = 2 (WL + LH + H)

A = 2 (WL + LH + HW) $V = W \times L \times H$

 $\frac{\text{Triangle}}{A = \frac{B \times H}{2}}$

|**≁S**→|

S

Hexagon S = R = 1.155r $A = 2.598 S^2$ $= 3.464 r^2$

Regular Polygon

 $A = \frac{NSr}{2} = \frac{NS}{2}\sqrt{R2} - \frac{S^2}{4}$

D = Diameter **S** = Length of side

 \mathbf{N} = Number of sides \propto = Angle

View Product Inventory @ www.tempco.com