Area and Volume Formulas

Circle

$\mathrm{D}=2 \mathrm{R}$
$C=2 \pi R=\pi D$
$\mathrm{A}=\pi \mathrm{R}^{2}=\frac{\pi \mathrm{D}^{2}}{4}$

Circular Ring

$$
\begin{aligned}
A & =\pi\left(R^{2}-r^{2}\right) \\
& =0.7854\left(D^{2}-d^{2}\right)
\end{aligned}
$$

Ellipse

$\mathrm{A}=\pi \times \mathrm{A} \times \mathrm{B}$
$\mathrm{C}=\pi \sqrt{2\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)}$

Sphere
$\mathrm{A}=4 \pi \mathrm{R}^{2}$
$\mathrm{V}=\frac{4 \pi \mathrm{R}^{3}}{3}$

Cylinder

$\mathrm{A}=2 \pi \mathrm{R}(\mathrm{R}+\mathrm{H})$
$\mathrm{V}=\pi \mathrm{R}^{2} \mathrm{H}$

Cone

$\mathrm{A}=\pi \mathrm{R} \sqrt{\left(\mathrm{R}^{2}+\mathrm{H}^{2}\right)}$
$V=\frac{\pi R^{2} H}{3}$

A = Area
$\mathbf{V}=$ Volume
C = Circumference
$\mathbf{R}=$ Radius

Rectangle

$$
\mathrm{A}=\mathrm{L} \times \mathrm{W}
$$

Parallelogram

$\mathrm{A}=\mathrm{L} \times \mathrm{H}$

Trapezoid

$\mathrm{A}=\frac{(\mathrm{L} 1+\mathrm{L} 2) \mathrm{H}}{2}$

Rectangular Solid

$\mathrm{A}=2(\mathrm{WL}+\mathrm{LH}+\mathrm{HW})$
$\mathrm{V}=\mathrm{W} \times \mathrm{L} \times \mathrm{H}$

Triangle

$A=\frac{B \times H}{2}$

Hexagon

$\mathrm{S}=\mathrm{R}=1.155 \mathrm{r}$
$\mathrm{A}=2.598 \mathrm{~S}^{2}$
$=3.464 \mathrm{r}^{2}$

Regular Polygon

$$
\mathrm{A}=\frac{\mathrm{NSr}}{2}=\frac{\mathrm{NS}}{2} \sqrt{\mathrm{R} 2-\frac{\mathrm{S}^{2}}{4}}
$$

D = Diameter
S = Length of side
$\mathbf{N}=$ Number of sides
$\propto=$ Angle

