Engineering Data

KW Calculations

Calculating KW Requirements to Superheat Steam

Problem: Heat 420 lbs/hr of 90% quality steam to 620°F @ 75PSIG

- 1. Plot the pressure on graph **P** and the steam quality on graph **Q**. Draw a straight line from **P** through **Q** and read **W1**.
- Plot the degrees of superheat on graph S. The degrees of superheat equals operating temperature minus saturated temperature. Saturated temperature is read beside gauge pressure on graph P. 620°F 320°F = 300°F

Draw a straight line from **P** through **S** and read **W2**.

3. Determine the required KW using the following equation: $KW = LBS/HR \times (W2 - W1) / 1000 \times Safety factor$ $= 420 \times (114 - 36) / 1000 \times 1.2 = 39.3 \text{ KW}$

Note: Element watt density is critical in choosing the correct circulation heater and is dependent upon maximum operating temperature and steam velocity.

Superheated Steam Graph

Nominal	Threads	Inside	Outside	Weight	Length in Feet	Gallons in	Weight
Pipe	Per	Diameter	Diameter	Pipe	Containing One	One Linear	Water
Size	Inch	(inches)	(inches)	(lbs/ft)	Cubic Foot	Foot	(lbs/ft of Pipe)
1/8	27	0.269	0.405	0.244	2526.000	0.0030	0.025
1/4	18	0.364	0.540	0.424	1383.800	0.0054	0.045
3/8	18	0.493	0.675	0.567	754.360	0.0099	0.083
1/2	14	0.622	0.840	0.850	473.910	0.0158	0.132
3/4	14	0.824	1.050	1.130	270.030	0.0277	0.231
1	11½	1.049	1.315	1.678	166.620	0.0449	0.374
11/4	11½	1.380	1.660	2.272	96.275	0.0777	0.648
11/2	11½	1.610	1.900	2.717	70.733	0.1058	0.882
2	11½	2.067	2.375	3.652	49.913	0.1743	1.453
21/2	8	2.469	2.875	5.793	30.077	0.2487	2.073
3	8	3.068	3.500	7.575	19.479	0.3840	3.200
31/2	8	3.548	4.000	9.109	14.565	0.5136	4.280
4	8	4.026	4.500	10.790	11.312	0.6613	5.510
5	8	5.047	5.563	14.617	7.198	1.0393	8.660
6	8	6.065	6.625	18.974	4.984	1.5008	12.510
8	8	7.981	8.625	28.551	2.878	2.5988	21.680
10	8	10.020	10.750	40.483	1.826	4.0963	34.100
12	8	12.000	12.750	49.560	1.274	5.9036	49.000
14	8	13.250	14.000	54.570	1.046	7.1928	59.700
16	8	15.250	16.000	62.580	0.789	9.5301	79.100
18	8	17.250	18.000	70.590	0.617	12.1928	101.200

Standard Pipe Data

Barlow's Formula

Pressure ratings of fluid vessels depend mainly on the tensile strength of the material being used at the process temperature, and the wall thickness of the vessel. Normally, the safety factor ratio should be at least 4 to 1 in determining the maximum pressure a vessel may see.

 $\frac{\text{Minimum wall}}{\text{thickness (in)}} = \frac{\text{Maximum Pressure (PSI)} \times \text{OD of vessel (in)}}{2 \times \text{Tensile Strength (PSI) at process temperature}}$

(800) 323-6859 • Email: sales@tempco.com